
Discontinuous Galerkin method for an N-dimensional
spherically symmetric Poisson equation

Yuki Chiba

Graduate School of Mathematical Sciences, University of Tokyo

Joint work with Norikazu Saito

International Workshop on Numerical Methods for Partial Differential
Equations

The Hong Kong Polytechnic University
March 26, 2018



Contents

1. Introduction

2. DG Scheme

3. Analysis of Scheme

4. Numerical Results

5. Modified DG Scheme

Yuki Chiba (Univ. of Tokyo) DG for Poisson equation March 26, 2018 2 / 33



1 . Introduction

Yuki Chiba (Univ. of Tokyo) DG for Poisson equation March 26, 2018 3 / 33



Introduction

In the theory of PDE, it is known several critical phenomena with critical
value related to space dimension N .

Example: Positive solution of semilinear elliptic equation

N ≥ 3，Ω ⊂ RN : smooth bounded domain.{
∆u+ |u|p−1 u = 0 (x ∈ Ω)

u = 0 (x ∈ ∂Ω)

If 1 < p < ps = (N + 2)/(N − 2), positive solution exists. If p > ps,
positive solution may not exist.

If we can make numerical method for nonlinear PDEs in higher dimension,
it is useful for studying critical phenomena through experimental
consideration.
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Model Problem

Consider the Poisson equation in N -dimensional ball
BR = {ξ ∈ RN | |ξ|RN < R}.

Poisson equation{
−∆ξU(ξ) +Q(ξ)U(ξ) = F (ξ) (ξ ∈ BR)

U(ξ) = 0 (ξ ∈ ∂BR)
(1)

Set x = |ξ| and we assume that coefficient function Q and F are
spherically symmetric Q(ξ) = q̂(x), F (ξ) = f̂(x).
Then, (1) is reduced to next equation.{

− 1
xN−1

(
xN−1ûx

)
x
+ q̂û = f̂ (x ∈ I = (0, R))

ûx(0) = û(R) = 0
(2)

Yuki Chiba (Univ. of Tokyo) DG for Poisson equation March 26, 2018 5 / 33



Model Problem

In previous study, there are two FEMs using weight function to eliminate
singularity. (cf. K, Ericsson and V, Thomée. 1984)

1. Using weight function xN−1

−(xN−1ûx)x + xN−1q̂û = xN−1f̂

2. Using weight function x

−(xûx)x + (2−N)ûx + xq̂û = xf̂

In this study, we apply Discontinuous Galerkin (DG) method to second
case.
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2 . DG Scheme
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DG Scheme

Generally, consider the following problem.

Diffusion-convection equation{
−(νux)x + bux + qu = f (x ∈ I)

ux(0) = u(R) = 0
(3)

ν(x) = x, b ≤ 0:Const., q, f ∈ L2(I), q(x) > 0 (x ∈ I)

Divition Th = {Ki}i∈Λ of I is defined by below.

0 = x1 < x2 < · · · < xi < · · · < xn = R

Ki = (xi, xi+1), hi = |Ki| = xi+1 − xi,

h = max
i∈Λ

hi, Λ = {1, 2, . . . , n− 1}

ei = min{hi, hi−1} (i = 2, . . . , n− 1), en = hn−1
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DG Scheme

Function space
Hm(Th) = {v ∈ L2(I) | v|Ki ∈ Hm(Ki) (i ∈ Λ)}
Vh = V k

h = {v ∈ L2(I) | v|Ki ∈ Pk(Ki) (i ∈ Λ)}

Notation: For v ∈ H1(Th), vi = v|Ki (i ∈ Λ)

νi = ν(xi) = xi, (u, v)i =

∫ xi+1

xi

uv dx

[[v]]i =


−v1(x1) (i = 1)

vi−1(xi)− vi(xi) (2 ≤ i ≤ n− 1)

vn−1(xn) (i = n)

⟨⟨ v ⟩⟩ i =


v1(x1) (i = 1)
vi−1(xi)+vi(xi)

2 (2 ≤ i ≤ n− 1)

vn−1(xn) (i = n)
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DG Scheme

DG Scheme

Find uh ∈ Vh s.t.
ah(uh, v) = adh(uh, v) + acrh (uh, v) = (f, v) (∀v ∈ Vh)

(4)

adh(u, v) =

n−1∑
i=1

(νux, vx)i −
n∑

i=2

νi ⟨⟨ux ⟩⟩ i[[v]]i

− α

n∑
i=2

νi ⟨⟨ vx ⟩⟩ i[[u]]i +
n∑

i=2

νiσ

ei
[[u]]i[[v]]i

acrh (u, v) = −
n−1∑
i=1

(bu, vx)i +

n−1∑
i=1

b ⟨⟨u ⟩⟩ i[[v]]i +
n−1∑
i=2

1

2
|b|[[u]]i[[v]]i +

n−1∑
i=1

(qu, v)i

(f, v) =

n−1∑
i=1

(f, v)i
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3 . Analysis of Scheme
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Norms

We introduce following DG norms.

∥v∥2d =

n−1∑
i=1

(νvx, vx)i +

n∑
i=2

νiσ

ei
[[v]]2i , ∥v∥2d,∗ = ∥v∥2d +

n−1∑
i=1

h2i (νvxx, vxx)i

∥v∥2cr =
n−1∑
i=1

(qv, v)i +

n∑
i=1

1

2
|b|[[v]]2i , ∥v∥2cr,∗ = ∥v∥2cr +

n−1∑
i=1

|b| ⟨⟨ v ⟩⟩ 2i

|||v|||2 = ∥v∥2d + ∥v∥2cr, |||v|||2∗ = ∥v∥2d,∗ + ∥v∥2cr,∗

Assume that division {Th}h is quasi-uniform.

∃θ0 > 0 s.t. 0 <
hi
hj

≤ θ0 (1 ≤ ∀i, j ≤ n, ∀Th ∈ {Th}h) (A1)
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Inequality with Weighted norm

Lem 1 (Trace inequality)
There exists a positive constant C1 = C1(θ0) satisfying

νi(v
i
x(xi))

2 ≤ C1(h
−1
i (νvx, vx)i + hi(νvxx, vxx)i)

νi(v
i
x(xi+1))

2 ≤ C1(h
−1
i (νvx, vx)i + hi(νvxx, vxx)i).

Lem 2 (Inverse inequality)
Let K = (s, t) ⊂ R>0 be interval and set ρ = t− s > 0. Then, There
exists a positive constant C2 = C2(k) satisfying∫

K
xv2xx dx ≤ C2ρ

−2

∫
K
xv2x dx (v ∈ Pk).
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Analysis of Diffusion Term adh

Lem 3 (Continuity and coercivity of adh)
(i) For all α ∈ R and σ > 0, there exists a positive constant Cd > 0
independent of h satisfying

adh(u, v) ≤ Cd∥u∥d,∗∥v∥d (u ∈ H2(Th), v ∈ Vh).

(ii) There exists a positive constant σ∗ > 0 independent of h satisfying
below. If σ ≥ σ∗, then

adh(v, v) ≥
1

2
∥v∥2d (v ∈ Vh).
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Analysis of Diffusion Term adh

Proof
(i) By Cauchy-Schwarz’s inequality,

|adh(u, v)| ≤

(
n−1∑
i=1

(νux, ux)
2
i +

n∑
i=2

νiei
σ

⟨⟨ux ⟩⟩ 2i + (1 + |α|)
n∑

i=2

νiσ

ei
[[u]]2i

)1/2

·

(
n−1∑
i=1

(νvx, vx)
2
i +

n∑
i=2

νiei
σ

⟨⟨ vx ⟩⟩ 2i + (1 + |α|)
n∑

i=2

νiσ

ei
[[v]]2i

)1/2

.

Using trace inequality and inverse inequality, we get the estimate.
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Analysis of diffusion term adh

Proof
(ii) Using Cauchy-Schwarz’s inequality，trace inequality and inverse
inequality, for δ > 0,

adh(v, v) ≥
(
1− 1 + |α|

2δσ
C1(1 + C2)

) n−1∑
i=1

(νvx, vx)i

+

(
1− 1 + |α|

2
δ

) n∑
i=2

νiσ

ei
[[v]]2i .

Choosing δ = 1/(1 + |α|) and σ ≥ σ∗ = C1(1 +C2)(1 + |α|)/δ, we get the
estimate．
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Analysis of Convection Term acrh

For each i ∈ Λ, we define PKi : L
1(Ki) → Pk(Ki) as locally L2 projection

operator.
We define globally L2 projection operator Ph : L1(I) → Vh by
(Phv)|Ki = PKiv (i ∈ Λ).

Lem 4 (Continuity and covercivity of acrh )
(i) There exists a positive constant Ccr > 0 independent of h satisfying

acrh (u− Phu, v) ≤ Ccr∥u− Phu∥cr,∗∥v∥cr (u ∈ H2(Th), v ∈ Vh).

(ii) Following inequality holds.

acrh (v, v) ≥
1

2
∥v∥2cr (v ∈ Vh)
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Analysis of Convection Term acrh

Proof
(i) Set ϕ = u− Phu. Since vx ∈ Pk−1, (ϕ, vx)i = 0. Using
Cauchy-Schwarz’s inequality,

acrh (ϕ, v) ≤

(
n−1∑
i=1

|b| ⟨⟨ϕ ⟩⟩ 2i +
n−1∑
i=2

1

2
|b| [[ϕ]]2i +

n−1∑
i=1

(qϕ, ϕ)i

)1/2

·

(
n−1∑
i=1

|b| [[v]]2i +
n−1∑
i=2

1

2
|b| [[v]]2i +

n−1∑
i=1

(qv, v)i

)1/2

≤ 3∥ϕ∥cr,∗∥v∥cr.
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Analysis of Convection Term acrh

Proof
(ii) Using integration by parts,

−
n−1∑
i=1

(bv, vx)i =
n−1∑
i=1

[
(bvx, v)i − b(vi(xi+1)

2 − vi(xi)
2)
]

=

n−1∑
i=1

(bvx, v)i + bv1(x1)
2 − bvn−1(xn)

2 − 2

n−1∑
i=2

b ⟨⟨u ⟩⟩ i[[v]]i.

So,

−
n−1∑
i=1

(bv, vx)i =
[
bv1(x1)

2 − bvn−1(xn)
2
]
/2−

n−1∑
i=2

b ⟨⟨u ⟩⟩ i[[v]]i.

Substituting this for acrh (v, v), we get the estimate.
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Analysis of ah

Lem 5 (Continuity and Coercivity of ah)
(i) For all α ∈ R and σ > 0, there exists a positive constant Cdcr > 0
independent of h satisfying

ah(u− Phu, v) ≤ Cdcr|||u− Phu|||∗|||v||| (u ∈ H2(Th), v ∈ Vh).

(ii) There exists a positive constant σ∗ independent of h satisfying below.
If σ ≥ σ∗, then

ah(v, v) ≥
1

2
|||v|||2 (v ∈ Vh).
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Analysis of ah

Thm 1
Let u ∈ H2(I) be the solution of (3). Assume that σ ≥ σ∗.
Then, there exists a unique solution uh ∈ Vh of DG Scheme (4), and it
satisfies Galerkin orthogonality

ah(u− uh, v) = 0 (v ∈ Vh).

In addition, the following estimate holds.

|||u− uh||| ≤ (1 + 2Cdcr) |||u− Phu|||∗. (5)

If u is sufficiently smooth, the order of error is O(hk).
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4 . Numerical Results
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Numerical Results

I = (0, 1), N = 3, 100, b = 2−N , α = 1, σ = 20
(i) u(x) = cos π

2x

10 3 10 2 10 1

10 3

10 2

N=3
N=100

Error of ||| · ||| using P1 (k = 1)
10 3 10 2 10 1

10 7

10 6

10 5

10 4

10 3
N=3
N=100

Error of ||| · ||| using P2 (k = 2)

The order of error is O(hk) for sufficiently small h．
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Numerical Results

I = (0, 1), N = 3, 100, b = 2−N , α = 1, σ = 20
(ii) u(x) = x7/4 − 1

10 3 10 2 10 1

10 3

10 2

N=3
N=100

Error of ||| · ||| using P1 (k = 1)
10 3 10 2 10 1

10 6

10 5

10 4

10 3

N=3
N=100

Error of ||| · ||| using P2 (k = 2)

The order of error is O(h) if k = 1 and O(h7/4) if k = 2.
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Observations of Other Norms

I = (0, 1), N = 3, 100, b = 2−N , α = 1, σ = 20, P1 element
(i) u(x) = cos π

2x

10 3 10 2 10 1

10 7

10 6

10 5

10 4

10 3

10 2

10 1
L2

Weighted L2

Energy
L

Error for N = 3
10 3 10 2 10 1

10 7

10 6

10 5

10 4

10 3

10 2

10 1

L2

Weighted L2

Energy
L

Error for N = 100

||| · ||| norm is O(h), the others are O(h2).
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Observations of Other Norms

I = (0, 1), N = 3, 100, b = 2−N , α = 1, σ = 20, P1 element
(ii) u(x) = x7/4 − 1

10 3 10 2 10 1

10 7

10 6

10 5

10 4

10 3

10 2

10 1
L2

Weighted L2

Energy
L

Error for N = 3
10 3 10 2 10 1

10 7

10 6

10 5

10 4

10 3

10 2

10 1

L2

Weighted L2

Energy
L

Error for N = 100

L2 and weighted L2 norm are O(h2), ||| · ||| norm is O(h), L∞ norm is
O(h7/4).
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Observations of Other Norms

I = (0, 1), N = 3, 100, b = 2−N , α = 1, σ = 20, P1 element
(iii) u(x) = x5/4 − 1

10 3 10 2 10 1

10 7

10 6

10 5

10 4

10 3

10 2

10 1 L2

Weighted L2

Energy
L

Error for N = 3
10 3 10 2 10 1

10 7

10 6

10 5

10 4

10 3

10 2

10 1
L2

Weighted L2

Energy
L

Error for N = 100

L2 norm is O(h7/4), weighted L2 norm is O(h2), ||| · ||| norm is O(h), L∞

norm is O(h5/4).
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Observations of Other Norms

I = (0, 1), N = 3, 100, b = 2−N , α = 1, σ = 20, P1 element
(iv) u(x) = x3/4 − 1

10 3 10 2 10 1

10 6

10 5

10 4

10 3

10 2

10 1

L2

Weighted L2

Energy
L

Error for N = 3
10 3 10 2 10 1

10 6

10 5

10 4

10 3

10 2

10 1

L2

Weighted L2

Energy
L

Error for N = 100

L2 norm is O(h5/4), weighted L2 norm is O(h7/4), ||| · ||| norm and L∞

norm are O(h3/4).
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5 . Modified DG Scheme

Yuki Chiba (Univ. of Tokyo) DG for Poisson equation March 26, 2018 29 / 33



Modified DG Scheme

Modified DG Scheme

Find uh ∈ Vh s.t.
bh(uh, v) = (f, v) (∀v ∈ Vh)

(6)

bh(u, v) =

n−1∑
i=1

(νux, vx)i −
n∑

i=2

νi ⟨⟨ux ⟩⟩ i[[v]]i +
n∑

i=2

νiσ

ei
[[u]]i[[v]]i

+
n−1∑
i=1

(bux, v)i −
n∑

i=2

b[[u]]i ⟨⟨ v ⟩⟩ i +
n−1∑
i=2

1

2
|b|[[u]]i[[v]]i +

n−1∑
i=1

(qu, v)i
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Modified DG Scheme

Thm 2
Let u ∈ H2(I) be the solution (3). Assume that σ ≥ σ∗.
Then, there exists a unique solution uh ∈ Vh of DG Scheme (6), and it
satisfies Galerkin orthogonality.
In addition, there exists a positive constant C > 0 independent of h
satisfying

∥u− uh∥L∞(I) ≤ C(h inf
χ∈Vh

∥u− χ∥DG,∞,0 +max
i∈Λ

∣∣(u− uh)
i(xi+1)

∣∣)
max
i∈Λ

∥(u− uh)x∥L∞(Ki)
≤ C( inf

χ∈Vh

∥u− χ∥DG,∞,0 +max
i∈Λ

∣∣(u− uh)
i(xi+1)

∣∣)
for sufficiently small h. Moreover, if q = 0, we have

max
i∈Λ

∥(u− uh)x∥L∞(Ki)
≤ C inf

χ∈Vh

∥u− χ∥DG,∞,0.
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Modified DG Scheme -Numerical Result-

I = (0, 1), N = 100, b = 2−N , σ = 20
u(x) = cos π

2x

Error using P1 (k = 1) Error using P2 (k = 2)

L∞ norm is O(hk+1) and piecewize W 1,∞ semi norm is O(hk).
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Conclusion

We have introduced DG schemes for a singular-perturbation elliptic
problem derived from a spherical symmetric Poisson equation in the N
dimensional ball. We have derived error estimates in the DG energy
norm.
We have confirmed the rate of convergence by numerical experiments.
Optimal orders (depending on the regularity of solutions) were actually
observed.
Some point-wise estimates were obtained for a modified DG scheme.
In the future work, I will apply the results to evolution equations and
extend to nonlinear problems.
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