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Introduction

In the theory of PDE, it is known several critical phenomena with critical
value related to space dimension N.

Example: Positive solution of semilinear elliptic equation
N >3, Qc RY: smooth bounded domain.

Au+[uftu=0 (zeQ)
u=0 (x € 09)

If 1 <p<ps=(N+2)/(N —2), positive solution exists. If p > pj,
positive solution may not exist.

If we can make numerical method for nonlinear PDEs in higher dimension,
it is useful for studying critical phenomena through experimental
consideration.
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Model Problem

Consider the Poisson equation in N-dimensional ball
Br ={¢ € RV | [¢([gy < R}.

Poisson equation

{ —AU(E) + QE)U(E) = F(€) (€ € Br) (1)

U(§) =0 (§ € 9BR)

Set x = |£| and we assume that coefficient function @) and F' are

spherically symmetric Q(¢) = ¢(z), F(¢) = f(x).
Then, (1) is reduced to next equation.

DG for Poisson equation




Model Problem

In previous study, there are two FEMs using weight function to eliminate
singularity. (cf. K, Ericsson and V, Thomée. 1984)

N-1

1. Using weight function x

v

(&N i) + 2V gl = 2N f

2. Using weight function x

—(2lig)z + (2 — Ny + zqts = «.f

In this study, we apply Discontinuous Galerkin (DG) method to second
case.
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2 . DG Scheme
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DG Scheme

Generally, consider the following problem.

Diffusion-convection equation

{ —(vug)e +bug +qu=f (x€l) (3)

v(r) =z, b < 0:Const., ¢, f € L2(1), q(x) > 0 (x € I)

Divition 75, = {K;}ien of I is defined by below.

D=z <2< - <x; < <xp=R
K; = (zi,xit1), hi = |Ki| = 21 — 24,
h =maxh;, A={1,2,...,n—1}

€A

€; :min{hi,hi_l}(i:2,...,n—1), en:hn_l
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DG Scheme

Function space

H™(Tp) = {ve L*(I) | v|k, € H™(K;) (i € A)}
Vi =V ={ve L) | vk, € PE(K;) (i € A)}

Notation: For v € H'(Ty), v' = v|k, (i € A)

Tit1
v; = v(x;) = xy, (u,v); = / uv dr
X

[v]i = < v () —vi(z) (2<i<n-—1)




DG Scheme

Find wup €V, st
ap(up,v) = a%(uh,v) + aff (up,v) = (f,v) (v € Vp)

(4)

n—1 n
ap(u,0) =Y (Vug,ve)i — Y vifua),[vls
=1 1=2
— oY wife)luli+ > " il
n—1 Z:2n71 Z_nzfl 1 n—1
agt (u,v) = =Y (bu,ve)i + Y bfu) vl + > 5 lolTulilv]i + > (qu,v);
=1 =1 1=2 =1
n—1
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3 . Analysis of Scheme
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We introduce following DG norms.

n—1 n n—1
Vo
lollF =Y (v, v0)i+ ) DI ol = vllE + > 1 (Vose, vaa)i
i=1 i=2 i=1
n—1 n 1 n—1
2 2 2 2 2
ol1g =Y _(av,0)i + 3 SIBII0]Z, 0llZ . = [10lIZ + D 1b1{0);
i=1 i=1 i=1
lloll* = Nlollg + vz, ol = lIvl1F . + lvl1Z
Assume that division {7}, is quasi-uniform.
3 hi V. . \
p>0 st 0< o <6y (1<%,5<n, "The{Tn}n) (A1)
J
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Inequality with Weighted norm

Lem 1 (Trace inequality)

There exists a positive constant C; = C(6y) satisfying
Vi(v ( )) < Cl(h (vavvét) + hi(’/vmmvmc)i)

Vi(U;(wi—H)) < C1(h; H(vvg, ve)i + hi(Vgg, Ve )i)-

Lem 2 (Inverse inequality)

Let K = (s,t) C Rsq be interval and set p =t — s > 0. Then, There
exists a positive constant Cy = Ca(k) satisfying

/ i 02,0_2/ zv2dr (v e PP).
K K
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Analysis of Diffusion Term af

Lem 3 (Continuity and coercivity of a)

(i) For all @ € R and o > 0, there exists a positive constant Cyq > 0
independent of h satisfying

ah(u,v) < Cyllullasllvlla (u€ H(Th), v € Vi)

(ii) There exists a positive constant o, > 0 independent of h satisfying

below. If o > 0., then

1
ay(v,0) 2 Sllolld (v € Va).

Yuki Chiba (Univ. of Tokyo DG for Poisson equation March 26, 2018

14

33



Analysis of Diffusion Term af

Proof
(i) By Cauchy-Schwarz's inequality,

n—1 n . 1/2
|a%<u,v>|s(2<uux,ux +Z”€’ ()i + (1 +]a) D % [[u]]?)

7

i=1 =2 =2
n-l V;€; o V;0 1/2
() z ( 2
: E vaa'Uz + § (1 + ‘O‘D E : Ul ’
° ° €;
=1 =2

Using trace inequality and inverse inequality, we get the estimate.
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Analysis of diffusion term a!

(ii) Using Cauchy-Schwarz's inequality, trace inequality and inverse
inequality, for § > 0,

n—1
1
a%(v,v)z(l Ll +cg)zuvm,vm
=1

+ (1 - 2'“'5) Z’Z—?[[v]]g.

i=2

Choosing 6 = 1/(1 +|a|) and 0 > 0, = C1(1 + C2)(1 + |a]) /0, we get the
estimate.

v
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Analysis of Convection Term aj’

For each i € A, we define Py, : L'(K;) — P¥(K;) as locally L? projection
operator.

We define globally L? projection operator P, : L*(I) — V}, by

(th)‘Ki = PKiU (Z € A)

Lem 4 (Continuity and covercivity of aj’)

(i) There exists a positive constant C¢; > 0 independent of h satisfying
azr(u — Pyu, U) < CcrHu - PhuHcr,*“UHcr (’LL € H2(771)7 (S Vh)

(ii) Following inequality holds.

ay (v,v) > Hchr (v € Va)
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Analysis of Convection Term aj’

Proof

(i) Set ¢ = u — Pyu. Since v, € P*71, (¢,v;); = 0. Using
Cauchy-Schwarz's inequality,

n—1 n—1 il 1/2
v) < (Z LIRS 3 Wl I6 + > (a9, ¢>i)
n—1 1/2
<Z Bl [o]7 + Z bl [o]? + Z (qu, v )

=1

Yuki Chiba (Univ. of Tokyo DG for Poisson equation March 26, 2018

18 / 33



Analysis of Convection Term aj’

(ii) Using integration by parts,

_ Z bv, vg); = z_;l [(bvz, v)i — b(v! (wit1)? — v (2:)?)]
_ g_f@ o) + bv (1) — bo" " (zn)? — ng«u»iﬂvﬂi.
So, _ _
_g(bv,vx)i = [bvl(21)? — 0" (2,)?] /2 — Zb )ilvl:

Substituting this for af"(v,v), we get the estimate.

v
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Analysis of ay,

Lem 5 (Continuity and Coercivity of ay,)

(i) For all @ € R and ¢ > 0, there exists a positive constant Cyc, > 0
independent of h satisfying

ap(u — Py, v) < Cacrlllu — Prullllllvll - (u € H*(Ta), v € Va).

(i) There exists a positive constant o, independent of h satisfying below.

If ¢ > oy, then .
an(v,v) > §|||U|||2 (v € Vh).
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Analysis of ay,

Thm 1

Let u € H?(I) be the solution of (3). Assume that o > o..
Then, there exists a unique solution uy, € Vj, of DG Scheme (4), and it
satisfies Galerkin orthogonality

ap(u—up,v) =0 (veE V).
In addition, the following estimate holds.

lw = uplll < (1 +2Caer) [llu — Prulfl«. (5)

If u is sufficiently smooth, the order of error is O(h*).
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Numerical Results

I=(0,1), N=3,100,b=2—-N,a=1,0 =20
(i) u(x) = cos Jx

T
— N=3 — N=3

—— N=100 1073 + —— N=100
107
1072
10-°
10 10
1077
102 102 107 1073 102 107!
Error of || - ||| using P! (k = 1) Error of ||| - ||| using P? (k = 2)

The order of error is O(h¥) for sufficiently small h.
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Numerical Results

I=(0,1), N=3,100,b=2—-N,a=1,0=20
(i) u(x) = 27/* -1
//
Error of ||| - ||| using P! (k = 1) Error of ||| - ||| using P? (k = 2)

The order of error is O(h) if k=1 and O(h™/4) if k = 2.
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Observations of Other Norms

I=(0,1), N=3,100,b=2—- N, a=1, 0 =20, P! element
(i) u(x) = cos Jx

— L — L
10-1 4 —— Weighted L2 10-1 - —— Weighted L2

—— Energy ~—— Energy

T st I £
10 = 10
10 ) 10 —
10 10
105 107%
106 10°°

107

1077

1073 1072 107t 1072 1072 1071

Error for N =3 Error for N = 100

Il - |l norm is O(R), the others are O(h?).
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Observations of Other Norms

I=1(0,1), N=3,100,b=2—- N, a=1, 0 =20, P! element
(i) u(x) = 27/* -1
— L — L
107! 4 Weighted L2 — 10-1 4 —— Weighted L2 =
—— Energy il —— Energy o
— L =t —_—r e
102 — 102 i
A =
1073 e 103 e
10 1074
107 10°%
106 1076
1077 1077
1073 1072 10t 1073 1072 107t
Error for N =3 Error for N = 100

L? and weighted L? norm are O(h?), ||| - ||| norm is O(h), L> norm is
O(h™/*).
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Observations of Other Norms

I=(0,1), N=3,100,b=2— N, a=1, 0 =20, P! element
(iii) u(z) = 24 =1

= L | Fi L i
07 Weighted 12 107+ Weighted L2

—— Energy —— Energy i
102+ L =t w24t —
10 i = 10 =i

— !

10 104
10 — 10
10-6 106
1077 1077

107 1072 107t 1073 102 107t

Error for N = 3 Error for N = 100

L? norm is O(h7/*), weighted L? norm is O(h?), ||| - ||| norm is O(h), L
norm is O(h°/4).
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Observations of Other Norms

I=(0,1), N=3,100,b=2— N, a=1, 0 =20, P! element

b LY

i =
—— Weighted 12 -i---- o i I e |
107! d:—— Energy

—tL"

i I |
10-3 102 107 1073 1072 107t

Error for N = 3 Error for N = 100

L? norm is O(h%/*), weighted L? norm is O(h"/*), ||| - ||| norm and L>
norm are O(h%/%).
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5 . Modified DG Scheme
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Modified DG Scheme

Modified DG Scheme

Find u, €V, st

b (un,v) = (f,v) (Tv e Vh) (6)
S - " vio
b, ) = Y (v, va)s = D vilus)ifols + Y = [uli{ol;
=1 =2 i=2

n—1 n—1
ulio); + 3 Slblludilols + 3 (qu, )
=2 =1
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Modified DG Scheme

Thm 2

Let u € H?(I) be the solution (3). Assume that o > o..

Then, there exists a unique solution uy, € V}, of DG Scheme (6), and it
satisfies Galerkin orthogonality.

In addition, there exists a positive constant C' > 0 independent of h
satisfying

Ju = wnl ey S OO inf = o0 + e (u = ) (zi41))
s = )l ey < CCIE ot = XD 00 + (= 0 (i)
for sufficiently small h. Moreover, if ¢ = 0, we have

ma |(w — k)l Lo sy < C If [l = XlIpg,co0-
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Modified DG Scheme -Numerical Result-

I=(0,1), N=100,b=2—N, o =20
u(r) = cos 5

107tE

10~

103 1072 107! 1073 1072 101

Error using Pt (k= 1) Error using P? (k = 2)

L norm is O(h¥*1) and piecewize W1 semi norm is O(h¥).
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Conclusion

@ We have introduced DG schemes for a singular-perturbation elliptic
problem derived from a spherical symmetric Poisson equation in the N
dimensional ball. We have derived error estimates in the DG energy
norm.

@ We have confirmed the rate of convergence by numerical experiments.
Optimal orders (depending on the regularity of solutions) were actually
observed.

@ Some point-wise estimates were obtained for a modified DG scheme.

@ In the future work, | will apply the results to evolution equations and
extend to nonlinear problems.
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